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1. Introduction

It is well known that classical mechanics describes the behavior of macroscopic objects, while quantum mechanics de-
scribes the behavior of microscopic objects with physical characteristics comparable in values with the Planck constant, such
as elementary particles, atoms, and molecules. For macroscopic objects the Planck constant is considered to be negligible so
that quantum effects can be ignored and classical mechanics in this regime provides a satisfactory approximation. However,
for microscopic objects it is critical to incorporate quantum effects into modeling for the best physical fidelity. There are sev-
eral equivalent quantum mechanics models, such as Schrédinger’s scheme, Heisenberg’s scheme, and Feyman'’s path-integral
scheme.

Here we consider the Schrédinger equation for a particle with unity mass

2
—ihUt+V(x)U—h7AU:0, xeR t>0, 1)
U(x,0) = Ao(X) exp (”Oh(")) 2)
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where V is real and smooth, 7o and A, are smooth, and h = h/27 with h a small (scaled) Planck’s constant. This equation is
obtained by introducing undulatory theory into classical mechanics, the so-called quantization procedure. Because the
Schrédinger equation propagates oscillations of wavelength h in space and time, resolving such oscillations by direct finite
difference methods requires many grid points per wavelength of O(h), which is costly in practice. As an alternative to obtain
a numerical approximation capturing quantum effects, semi-classical methods are sought to link classical and quantum
mechanics. In this paper, we design an Eulerian Gaussian-beam method for the Schrédinger equation in the semi-classical
regime, where the Planck constant is small.

The spirit of semi-classical approximation is expanding the quantum wave function around classical expressions in pow-
ers of contributions from quantum fluctuations. In the simplest case, we consider the following leading-order WKB] ansatz
for the quantum wave function,

Ux,t) ~ A(x, £) exp (”(”;’ t)), (3)
where A(x, t) is the amplitude function and t(x, t) is the phase function. Applying this ansatz to the Schrédinger equation and
considering the leading order singularities, we have the following eikonal equation for the phase function and the transport
equation for the amplitude function,

T 4+ V(X) +%7:§ =0, (4)

At+rx-Ax+%ArA:O, (5)
with the initial data,

T(Xa 0) = %O(X)» (6)

A(x,0) = Ay (). (7)

The transport equation for the amplitude is weakly coupled to the eikonal equation in the sense that one must first solve the
eikonal equation to provide related coefficients for the transport equation. Because the eikonal equation is a non-linear first-
order equation, in general there exists no global smooth (classical) solution for the equation. Consequently, the WKB] ansatz
(3) might not be valid globally in terms of global smooth eikonal and amplitude. One remedy is to seek globally defined un-
ique weak solutions in physical space to the eikonal equation, which leads to the so-called viscosity solution [8]. Another
remedy is to solve the eikonal equation in phase space first using the method of characteristics and then projecting the result-
ing solution into physical space. The essential difference between these two remedies can be seen right away: the viscosity-
solution based eikonal solution in physical space results in a single-valued phase function while the method-of-character-
istics based eikonal solution in physical space might result in a multivalued phase function. Which remedy is more appro-
priate depends on specific applications.

For linear Schrédinger equations, multivalued phases are appropriate, and the resulting amplitudes are also multivalued.
As a result, the WKBJ] ansatz (3) should be modified to accommodate multivalued phases and amplitudes, which has been
done systematically in terms of uniform asymptotic solutions in [20,25]. In both [20,25], one has to pay particular attention
to so-called caustics, where the projections of phase-space bi-characteristics into physical space, the so-called rays, converge
and the resulting amplitudes become infinite. In [20], one has to identify caustics so as to choose appropriate expanding
functions, such as Airy or Pearcy functions, to treat the boundary layer effect near caustics. In [25], one has to keep track
of the so-called Keller-Maslov index to compensate for the phase shift when passing through a caustic. In general, since
caustics can occur anywhere along the ray, the above two approaches are not satisfactory. In contrast, Gaussian beams pro-
vide a powerful framework for constructing uniform asymptotic solutions systematically even at caustics without identify-
ing caustics or keeping track of Keller-Maslov index.

The idea underlying Gaussian beams is simply to build asymptotic solutions to partial differential equations concentrated
on a single curve through the domain; this single curve is nothing but a ray as shown in [33]. The existence of such solutions
has been known to the pure mathematics community since sometime in the 1960s [1], and these solutions have been used to
obtain results on propagation of singularities in hyperbolic PDEs [13,33]. An integral superposition of these solutions can be
used to define a more general solution that is not necessarily concentrated on a single curve. Gaussian beams can be used to
treat pseudo-differential equations in a natural way, including Helmholtz and Schrédinger equations.

In geophysical applications, Gaussian beam superpositions have been used for seismic wave modeling [6] and for seismic
wave migration [12]. The numerical implementations in these works are based on ray-centered coordinates which prove to
be computationally inefficient [6,12]. More recently, based on [33,38] a purely Eulerian computational approach was pro-
posed in [17] which overcomes some of these difficulties. To the best of our knowledge, the Eulerian Gaussian beam method
proposed in [17] is the first successful Eulerian Gaussian beam framework; it can be easily applied to both high frequency
waves and semi-classical quantum mechanics. In [38] Lagrangian Gaussian beams are successfully constructed to simulate
mountain waves, a kind of stationary gravity wave forming over mountain peaks and interfering with aviation.

In quantum mechanics, some variants of Gaussian beams, such as frozen Gaussian beams and Gaussian wave packets,
have been used to construct approximate solutions to Schrédinger equations in the semi-classical regime [16,10,11]. How-
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ever, these formulations were all based on the Lagrangian framework. In this paper, we propose an Eulerian formulation for
Gaussian beams. We first follow the ansatz proposed in [33,38] to construct Gaussian beams to the Schrédinger equation
along central rays. Mathematically, this ansatz constructs an approximate phase function with an imaginary part as a Taylor
expansion around a central ray by using phase derivatives on the central ray. To have a corresponding Eulerian formulation
capturing multi-valued phases and caustics, we generalize the Eulerian Gaussian beam approach first proposed in [17] to the
Schrédinger equation. The Eulerian method proposed in [17] is based on level sets and paraxial Liouville equations [30,18,31]
and is designed to solve Helmholtz equations in the high frequency regime.

The advantages of this Eulerian Gaussian Beams approach over the usual Lagrangian framework are multi-fold. Unlike
usual Lagrangian formulations, we obtain a uniform resolution of beam distribution so that the resulting Gaussian beam
summation will have a uniform resolution as well. To obtain another asymptotic solution to the Schrodinger equation with
a different initial wave function or for a different parameter h, we only slightly modify the summation formula by extracting
a different level set function and corresponding computed quantities; this advantage is not shared by Lagrangian based
methods. This results in a computationally very efficient algorithm when we are solving the Schrodinger equation especially
for various settings of the initial wave function under the same potential. For instance, the proposed algorithm requires at
most O(sNm?) operations to compute s different solutions with s different initial wave functions under the same potential,
where N = O(1/h), and m < N is the number of beams that we apply and is weakly dependent on h.

We remark that there are some other recent works for solving the Schrodinger equation in the semi-classical regime. In
[22] the authors apply Wigner-transform techniques to the analysis of finite difference methods for the Schrédinger equa-
tion in the case of a small Planck constant; in terms of numerical approximations of quadratic observables rather than the
quantum wave function itself, they are able to obtain Wigner-measure related sharp conditions on the spatial-temporal grid
which guarantee convergence for average values of observables as the Planck constant tends to zero. In [2], the authors pro-
pose time-splitting spectral approximations for the linear Schrédinger equation in the semi-classical regime; in terms of
numerical approximations of quadratic observables rather than the quantum wave function itself, their numerical examples
and analytical considerations based on the Wigner transform show that weaker constraints on mesh sizes for the direct
numerical solution of the Schrédinger equation are admissible for obtaining correct observables. In terms of computing mul-
tivalued phases and amplitudes in an Eulerian framework, an approach based on level sets and Liouville equations first ini-
tiated in [28] and further developed in [29,7,15], etc., has been successful; as a further development along this line, in [14] an
Eulerian approach is proposed for computing multivalued physical observables for the Schrédinger equation in the semi-
classical regime, but the approach unavoidably runs into difficulty at caustics, and it does not construct the quantum wave
function either. Unlike [22,2] where physical observables are computed from numerical solutions obtained by direct numer-
ical methods for the Schrédinger equations, the Eulerian Gaussian beam approach proposed here computes the observables
from uniform asymptotic solutions of the Schrodinger equation. Since the beam-based asymptotic solution is valid even at
caustics, our Eulerian Gaussian beam approach is different from the approach in [14]. See [19,34] for recent development in
high frequency waves.

The rest of the paper is organized as follows. In Section 2, we summarize the Lagrangian Gaussian beam formulation and
develop four different methods for initializing beam propagation. In Section 3, we develop an Eulerian Gaussian beam for-
mulation and develop a semi-Lagrangian method for solving the resulting level-set equations and Liouville equations. In Sec-
tion 4, we analyze the complexities of the resulting algorithms. In Section 5, we show numerical examples to demonstrate
the efficiency and accuracy of the algorithms.

2. Lagrangian Gaussian beams (LGB)
2.1. Construction of Gaussian beams

We would like to construct an asymptotically valid solution ¥(x, t; h) for the Schrédinger equation, that is concentrated
on a single curve 7. Namely, | ¥(x, t; h)| is small away from y, and it will satisfy the Schrodinger equation up to O(h") for some
fixed positive number M under some appropriate norm. Here we are interested in constructing the lowest-order Gaussian
beam so that the Schrédinger equation will be satisfied up to O(v/h).

To construct such Gaussian beams for the Schrédinger equation,

2
—ihUt-s—V(x)U—h?AU:O, xeR t>0, (8)

we follow [33,38,24] and start with the WKBJ ansatz,
iT(x,t
U(x,t) ~ A(x,t) exp (%) 9)
The functions A(x, t) and t(x, t) are all assumed to be smooth, and these requirements are feasible because the beam solution
is constructed to be concentrated on a single curve; this is the essential difference between traditional WKBJ asymptotic

solutions and Gaussian beam solutions. As a result, the requirements on the phase function 7 are slightly different from those
of traditional WKB] asymptotics. We will require that 7 is real valued on ), but away from this curve ), T can be complex
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valued with the restriction that the imaginary part of the second-order derivative Ty, is positive definite. This will make U
look like a Gaussian distribution with variance h on planes perpendicular to y.
Define the following Hamiltonian for the Schrodinger equation,
pZ
Hx,p) =5 + V(). (10)
According to the Gaussian beam theory [33], such a curve y is nothing but the x-projection of bicharacteristics (x(t),p(t))
satisfying the following Hamiltonian system,

.odx

X= e Hy,  X|_o = Xo,

. dp

p:aszx Pli—o = Po: (11)
where ¢ is time parametrizing bicharacteristics. Along bicharacteristics, the phase function satisfies

.odt 1

t=g =3P -V, =" (12)

To determine the second order derivative 1, along bicharacteristics, we solve the following variational system for matrix-
valued solutions B(t) and C(t):

B=—-H,B—HuC, B|,_,=Bo,
C=HpB+HuC, Cl_o=1, (13)
where I is the identity matrix, and matrix By is chosen to take into account the initial phase function and to have an imag-

inary part which is positive definite. Here B = B(t; X0, py) and C = C(t;xo,p,) are taken to be the variations of p = p(t; xo, py)
and x = x(t; xo, py) along the bi-characteristics with respect to the initial point xo = o,

op ox
B(téxmpo) :@7 C(t;x(hpo) :@
We notice that BC™' yields the Hessian of the phase function 7 along the bi-characteristics. Solution to the above equations

exists on any interval t € [0, T]. Moreover, we have the following lemma on the bound of the solution; its proof can be found
in [33,38].

(14)

Lemma 2.1. Under the above assumptions, C(t) is non-singular for any t, and Im(BC™') is positive definite.

Since p(t) = T,(t) along bicharacteristics, we can use the following second-order Taylor expansion to define a smooth glo-
bal approximate phase function:

(8, X0, Po) = T(E: X, Do) + P(E:Xo, Do) - (X — X(1:X0,Py)) + 5 (¢ — (0. o))" (BC )¢ — X(: 0, py)). (15)

Next we need to determine the amplitude function A. According to the beam theory, the amplitude function A satisfies the
transport equation,

A= —%trace(BC”)A,A\tzo = Ao(Xo, D) (16)

The initial condition Ay depends on how the initial wave function is decomposed into a summation of Gaussians centered at
different locations, as we will see in Section 2.2. Solution to this equation can be found analytically and is given by the fol-
lowing lemma.

Lemma 2.2. The solution for the transport equation (16) is

Ao (Xo,
At 0.pp) = —o20Po)__ (17)
det(C(t; Xo, po))
Lemma 2.2 can be proved by applying the divergence theorem to Eq. (5) around a ray tube; this ray tube in the time-space
domain is defined by intersecting two neighboring rays with two horizontal surfaces corresponding to t' = t; and t’ = t5; see
[17] for a proof of a similar lemma.

To obtain a smooth global approximate amplitude function, we use the following extension:
A(X, £ X0, o) = A(t; Xo, o). (18)
Inserting (15) and (18) into the WKBJ ansatz yields an asymptotically valid solution:

"[’-(Xv t~ XO’pO)
h

(X, : X0, Po) = A(X, £:Xo. Po) €XP [l : (19)
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this beam solution is concentrated on a single smooth curve y which is the x-projection of the bicharacteristic emanating

from (xo,pg) at t =to = 0.
The asymptotic solution is obtained by integrating all the beams parametrized by the initial point (X0, py),

Ux.t) =c(e.nd) [ [ Wit poldodpo (20)
Do YXo
for some normalization constant c(€, h,d), where € is a parameter related to initial beam width.

2.2. Initializing Gaussian beams

We will consider the following highly oscillatory initial data for the Schrédinger equation:

UG, 0:h) = UnGxsh) = An (o) exp (57 21)
where Ap(x) and To(x) are smooth functions, and Ao(x) has compact support.

In practice, we may only know that Uy(x; h) is highly oscillatory, but we may not know the specific expressions of Ag(x)
and To(x). Therefore, we will initialize beam propagation by using different strategies and superpose them accordingly.

2.2.1. Initializing by asymptotic decomposition (AD)
If Ap(x) and 7o (x) are given in specific expressions, then we may use the following strategy to initialize beam propagation:

X|p = Xo,

Pleo = Po = o2 (),

o = T(Xo),

Bl,_o =Bo = a;%(xo) + iel,

Clo =1,

Ali_o = Ao(Xo), (22)

where [ is the identity matrix.

Consequently, the resulting beam ingredients are functions of X, only, and the approximate functions
T(X,t;X0,D0) = T(X,t;X0) and A(X, t;X0,pg) = A(X, £;Xo). Furthermore, the beam summation formula will be modified to be
the following:

Ux,t) = c(e,h,d)/ / W(x,£;X0,P0)0(Pg — Tx(Xo0))dpodxo = C(e,h,d)/ P(x, t:X0)d%o, 2
Xo “/Po .
where
¥(x,t;Xo) = A(X, t; Xo) €Xp {iw}
A(x, t;x0) = A(t; Xo),
T(X, t;X0) = T(t;X0) + p(t;X0) - (X — X(;X0)) + 1 (% — x(t:20)) (BC™) (% — X(£: X0)). ”

2
The following lemma proved in [37] holds in terms of recovering the initial data by the initial beam summation:

Lemma 2.3. Let ¢y € C*(RY) be a real-valued function and ao € C(R?). Define

() = an(x) exp [ o).

v(3) = (575 90 &80 {1 [9000) + G50 e~ )] + 5 50 — cix -7 . (25)

1/2
< c(ﬂ) (26)
2 €

The parameter € in the beam decomposition controls the initial beam width since the amplitude of the beam decays away
from the center in the order of

Then

u(x) — [ vloxy)dy

for some constant C.
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ofexp [ x-27?) ). 27)
Theoretically, this parameter will not affect the asymptotic solution as h — 0 and therefore we can arbitrarily pick this width.
One simple way is to pick unity. In this case, as seen from the estimate, the initial condition of this particular asymptotic
decomposition converges to the exact initial profile in the order of O(h”z).

In numerical implementation, numerical quadrature for the beam integral will introduce errors as well. Suppose that we
shoot out rays parameterized by y with a uniform spacing Ax, and we approximate the integral by a simple midpoint quad-
rature. Then the overall error in approximating the initial wave function will be o(l(g)” > £ Ax?).If € = 1, then the error is
O(h'? + Ax?); in other words, if h is fixed and we increase the number of beams by letting Ax — 0, then the approximation
error in the initial wave function is still in the order of h'/?, which is undesirable.

Here we propose to balance the two errors by choosing the initial beam width € according to h and Ax. Consider one
Gaussian centered at zero in the form of exp(—ey?/2h), which has the standard deviation of g = \/h/€. Since this Gaussian
decays to almost zero 3¢ away from the center, we propose to resolve this Gaussian using a fixed number of grid points.
Numerically, we use three grid points to resolve 3g, which gives € = h/Ax?. Another motivation of this particular choice
comes from [12] in which the author makes use of a sum of shifted Gaussians to approximate unity,

1 A —x)?
13\/T_n?xzi:exp (-%) (28)

where x; = iAx,i = 0,+1,+2,... The conclusion leads to a restriction that Ax < 2¢. Relating this condition to €, we have
€ < 4h/Ax?. Our choice indeed satisfies this extra accuracy requirement according to [12]. Similar considerations can also
be found in [10,35].

With this particular choice of the initial beam width, we have the following error estimate in the initial wave
decomposition,

< CAx, (29)

LZ

u(x) — Ay v(x;x)

where C is a constant. Given h and ¢, this gives a reasonable numerical recipe for decomposing an initial wave function into
Gaussians.

We remark that we may set up a mesh which is fine enough so that it will resolve Gaussians for h larger than a certain
hmin. As a result, we may not recompute necessary beam ingredients; this is essentially done in [17] for the Helmholtz equa-
tion in the high frequency regime.

2.2.2. Initializing by pointwise matching decomposition (PM)

Because the amplitude function Ay has compact support, we can further improve the numerical accuracy in the initial
decomposition by requiring that the summation matches with the initial wave function pointwise at the discrete level.
Mathematically, this means that we determine A(x;,0) for all i such that

U0s,0) = 8¢ Y- A, 0) exp () (30)
i
for all j with
wN ) a:fo(xi) ) 1 ) Tazfo(x,') ) 1 2
To(X; Xi) = To(Xi) +T(X —Xi) +§(X —Xi) T(X —Xi) + ’§€(X —X)" (31)
Letting A; = A(x;,0) and f; = U(x;,0), we obtain A; by solving the following system of linear equations for A = (A;,...,A)"
EA=F, (32)

where = (f;,... .f)T.€= [€i4] and &;j = explito(X;; X;) /h]Ax. Following the same argument as in the previous section, we use
€ = O(h/Ax?) which resolves the Gaussian using a fixed number of grid points.

A similar decomposition has been widely used in the radial basis function method for multivariate approximation. We
refer interested readers to [3] for more analysis on properties of the matrix £. In terms of a more general framework, these
coefficients A can be found using the following projection such that for k=1,...,I

/U(x,», 0) exp (W) dx; = /szi:A(xi, 0) exp (ifo()’;j;xi)> exp <iro()g;x")>dxj. (33)

2.2.3. Initializing by semi-classical Fourier transform
Applying the semi-classical Fourier transform to the initial wave function U(x, 0) = Uy (x), we have
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- | e —ip-x
U(p,O,h)7—(271_1’[)01/2 /% Up () exp( n )dx. (34)

Then the following system will be solved to obtain ingredients for beam propagation:
x= Hp, X|_o = Xo,
p = —H,, pl[:O = Do,
.1
=3P~ V(x), To=%"Po
B=—-H[B—HuC, B|_ =i,
C=HpB+HuC, Cl_o=1,
A= —%trace(BC’])A, Al_o = U(py, 0; h). (35)

We remark that the initial datum, t|,_y, = Xo - py, comes from the plane wave decomposition provided by the Fourier
transform.

Thus, the asymptotic solution to the Schrédinger equation is obtained by integrating all the beams parametrized by the
initial point (X0, py),

Ux,t) = (%)d

where ¥ is the contribution from a single Gaussian beam defined as in (19).
It is easy to verify that at t = 0 we recover the initial data in this case. Since

/ / ¥(x,t; X0, Po)dXodpy, (36)

bo /X0

¥(x,0;X0,p0) = U(py,0) exp <IW> (37)
where

(06, 0:%0,Po) = 10 Py + Py - (€~ Xo) + 5 (X~ 0)" (¥~ Xo), 39)
we have

e2\! €2\ ? - (Do - X +E|x — x|
00 0) = (5) [ [ w0 potsodpo = (575) [ [ 0p0)exp Hf dradp,

1 N Do X
= W / U(p,, 0) exp (lpoh )dpo = Uo(x).
Po

A similar initialization has been used in modeling mountain waves in [38].

2.2.4. Initializing by the Fourier-Bros-Ilagolnitzer (FBI) transform
The Fourier-Bros-lagolnitzer (FBI) transform [23] provides another approach for decomposing the initial data into Gaus-
sians. The FBI transform is defined by the following formula:

~ 2 — I — 2
00c.pi) = Ty = aanexp (-5 ) [ exp [—%} Uo(y)dy. (39
y

with the normalization constant given by
ot = 272 (mh) >, (40)

where d is the dimensionality, and (x —ip — y)* = (x —ip — y) - (X — ip — ¥).

The main advantage of the FBI transform over the Fourier transform is that this transform can provide information simul-
taneously about the local behavior of Uy and that of its semi-classical Fourier transform, namely, the microlocal behavior of
the function Uy [23]. Therefore, the FBI transform provides a micro-localized representation for U, in phase space so that the
total number of beams in phase space can be reduced as we will see in numerical examples.

To construct beams, we solve the following system to obtain ingredients for beam propagation:

Xx= HP? x|t:0 = Xo,

p: _HX7 p|t:0:p07

.1

7= jpz - V(X), Tl=0,

B=-H[,B—HuC, B|_,=Il,
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C=HpB+HuC, Cl_,=1,
A= —%trace(BC’])A, Al_o = U(X0,po; h). (41)

The asymptotic solution to the Schrédinger equation is obtained by integrating all the beams parametrized by the initial
point (Xo, ),

U £) = o / / W(x, £: Xo. Do) dXodpo. (42)
Po “Xo

It is easy to show that at t = 0 we recover the initial data. Since

- .T(x,0; X0,

(x.0:2.p0) = Ulo.po ) exp (1250, 43)
where

T(x,0:X0, Po) = Po - (X = X0) + 5 (X — o) (X~ Xo), (44)
we have

. i (Xo—x)* X
U(X70)=O€d,h/ / ‘P(X70§X07Po)dxodpo=O€d,h/ / U(xo,po; h)exp | —= (X0 —X) -Po — dxodpy=T"TUy = Uy,
Po /X0 Xo “Po h Zh

where 7 is the adjoint of 7. Here we have used a property of FBI transform [23]: 7°7 = I under some appropriate condi-
tions, where I is the identity operator.

We remark that initializing beam propagation by the FBI transform is exact theoretically and is accurate computationally
up to truncation error in numerical quadrature. To the best of our knowledge, initializing beam propagation by the FBI trans-
form is new.

2.3. Numerical methods

2.3.1. A numerical FBI transform

For some simple cases, we can analytically compute the integral (39). However, it is generally difficult to find the closed
form of U for an arbitrary Uo. In this section, we will discuss how to numerically evaluate the integral. In fact, the FBI trans-
form is related closely to the Gabor transform

Guy (%.P) = | exp(=ly ~07) exp(~2mip-y)Uo(y)dy (45)
by

. ix -

U(x,p,h) = ogpvV2th exp <Tp> Gy /3R (v 27mhx, \/Znhp). (46)

It is still an active research area to develop a fast discrete Gabor transform [32,39]. Therefore in this paper, instead of apply-
ing these newly developed methods, we simply implement the following O(n?) algorithm to embed the one-dimensional ini-
tial wave function in the phase space using the FBI transform, where n is the number of grid points in each direction in phase
space.

We assume that Uy has compact support and we denote U; = Uy(x;) at the grid points x; fori = 1,...,I. Consider an equiv-
alent form of the FBI transform,

2 A
U=7U, = OCd.h/ exp [ (x ;hy) +p : (Xh_ y)l} Uo(y)dy. (47)
y

One way to determine U(x;, py; h) is to approximate the above integral using the midpoint quadrature,

N ! X — X;)? o (xy — )i
Uy, pyih) = 2ni Y exp {(’Zh” P, (48)

=1

for each individual (x;, p;y ). In MATLAB, we do not implement this in a point-by-point fashion. For a one dimensional numer-
ical FBI transform, we first construct two matricesA andB with each entry given by —(x; — x;)?/2h and i(x; — x;)/h, respec-
tively. These two matrices are independent of p; and are stored separately from the integration routine.AThen, for each p;
we construct the matrix exp(A +p;B) and multiply it by the vector containing Up(x;). This gives U(xy,p;;h) for all
i'=1,...,1for a fixed p;.
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The above approximation converges to the exact solution as Ax — 0. However, in practice, we have to avoid the aliasing

error as in the numerical Fourier transform. For simplicity, we consider the one-dimensional case where Uy(y) is real. We
first rewrite (39) into

TUp = 0gp €XP <¥> /y exp { (x 2;/)2} exp {7 %} Uo(y)dy. (49)

To well-sample the oscillations from exp(—iyp/h), we require

max(_pmimpmax)AX E
h 2’
which implies p € (—hm/2Ax, ht/2Ax).
One possible improvement to the current approach is to truncate the Gaussians in the kernel and limit the evaluation of
the integral in a small neighborhood of each x. For instance, the matrix exp(A) can be approximated by a sparse matrix by
ignoring those off-diagonal entries when (x; — x;) is significantly large. Presumably, this will reduce the computational com-
plexity from O(n?) to O(n? logn); however, this is left for future work.

(50)

2.3.2. Algorithm: LGB-AD

Here we summarize the Lagrangian Gaussian Beam summation algorithm for solving the one-dimensional Schrodinger
equation by initializing beams based on the asymptotic decomposition (AD). It is relatively straight-forward to generalize
the algorithm to higher dimensions or use different initialization for beam propagation.

Algorithm 1. LGB-AD
1. Discretize the computational domain

Xi:Xmin“'(i_])Axv i:1’27--~71~,

pi:p(xi):ré)(xi)7 i:1727"'717

th =to + kAL, k=1,2,... K, (51)
where AX = (Xmax — Xmin)/(I — 1) and At = (t; — to)/K. Initialize €.

2. Atafixed t = ty, foreachi' =1,...,],
(a)  solve the ray tracing system (11)-(16) if Ag(x;) # O using the initial conditions

X(t = fo) =Xy,
p(t = tO) :pi’>
T(t = to) = To(Xy),
A(t = to) = Ao(xy),

_ PToxy) |
B(t=ty) = 2 + i€l
Ct=ty) =1 (52)

(b) foreachi=1,...,I, compute
l.'l,'(X}7 tk)
Y (X;, ti; Xy, Dy) = A(ty) €Xp —h ) (53)
where
1 _
T(X, te) = T(te) + P(G) (%; — X(8)) + 5 (% — X(te) (Bt C(t) ™) (X — X(t)). (54)
3. Sum up the individual wave function. For eachi=1,...,1,
1

U(Xhtk) :C(G,h7n)AXZ T(Xf7tk;xi/7pi,)' (55)

i'=1

Theoretically, (17) is the exact solution to the transport equation for the amplitude. However, since C(t; o, py) is complex,
we have to choose the correct branch for the square root in (17) so that A(t; xo, p,) is continuous along the characteristics.
Therefore, it is easier to directly solve (16) which will automatically determine the continuous solution in time.
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As described above, we approximate the integral in the Gaussian beam summation using the midpoint quadrature. We
discretize the x-direction of the phase space using a mesh with grid size Ax. This resolution is chosen solely according to
the accuracy in the solution. The finer the discretization, the better the approximation will be in calculating the Gaussian
summation integral using the midpoint rule. Further, in the cases when we pick € = h/Ax?, this mesh size also contributes
an error of O(Ax) to the asymptotic decomposition of the initial wave function. This accuracy requirement is different from
the resolution requirement. To visualize the solution, we have to sample the continuous solution U(x, t), (20), defined for all
x € RY. These sampling locations might be different from those grid locations we use to discretize the x-direction in phase
space. In general, both the number and the location of these sampling points can be arbitrary. However, to resolve fine oscil-
lations in the solution, we have to sample the solution on a mesh which is finer than the scale of those oscillations. This is a
requirement imposed only on the visualization step. To distinguish these sampling points from the discretization points x;,
we have denoted them by x; in the above algorithm.

When we initialize beam propagation in phase space using one of the transforms, we only modify the above algorithm by
discretizing the p-direction using p; = p, + (j — 1)Ap, shoot more rays, and sum more beams with a summation of j’ from 1
to J in the last step.

In terms of numerical implementation, the initial beams in the Lagrangian formulation are uniformly distributed over
phase space, while the beam locations at the final time are not uniformly distributed. Since we have no control of these beam
locations, it is generally difficult to determine the size of the computational domain and the total number of beams used.

3. Eulerian Gaussian beams (EGB)
3.1. Formulations

By the level set methodology we embed the ray tracing system into the Liouville equation in phase space. Let
d(x,p,t) € R, y(x,p,t) € RY, and T(x,p,t) € R'. We have the following level set equations and the phase equation,

¢t+HP'¢x_HX'¢p:Os ¢(X>pa0):X7
l//t_"Hp'l//x_HX'l//p:Ov l//(x»p70):p7

1
Te+ Hp-To—He Ty =5p* = V(®),  T(x,p,0) = To(x). (56)

Similarly we have the equations for A, B and C.

Ar+Hp-Ac—Hy-Ay = —1trace(BC’1)A7 Al =Ao(X,p),

2
B[+Hp'BX7HX'Bp :7Hz<-pB*HXXC7 B‘[:OZBO(X7P)7
Co+Hy-Co—Hy-Cp = HypB+HyuC, Clg=1. (57)

The initial conditions for functions A and B are specified according to how the initial wave function is decomposed into a
summation of Gaussians. If we initialize beam propagation by the FBI transform, then we set By(x,p) =il and
Ao(x,p) = U(x, p; h). If we initialize beam propagation by the asymptotic decomposition or the pointwise matching decom-
position, then we set By(x,p) = a;fz“ (x) + iel and Ao(x,p) = Ao(X).

Now we have all the ingredients for constructing Eulerian Gaussian beams. If the beam propagation is initialized by the
Fourier transform or the FBI transform, the asymptotic solution is given by

U(x,t) = c(€,h,d) / / Y(x,t:x',p')A(Xo, Po; X, P, t)dX'dp’, (58)
Jp Jx
where
Y(x,t;x,p)=AX,p, t)exp {i%r(x, t;x’,p’)} , (59)
T 6X,p) =TX,p',t) +p"- (x = X) + % (x—x)"(BC ) (x - X) (60)

and A(Xo,py; X, D', t) is the Jacobian of the map (x',p’) — (xo,py), Where (xo,p,) refers to the initial values of the level sets ¢
and y arriving at (x',p’) at time t. Moreover, the Jacobian of the map (xo,p,) — (X',p’) satisfies the conservation law

Ac+ (HpA), — (HyA), =0, Ao=1 (61)

and it follows that A(xo,py; X', p’,t) = 1. This implies that the asymptotic solution is simply given by
U(x,t) = c(€, h,n) / / Y(x,t;x,p)dx'dp’. (62)

On the other hand, if the beam propagation is initialized by the asymptotic decomposition or the pointwise matching decom-
position, we extract the necessary information by looking into the zero level set defined by
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{(va) : W(va7 t) _6%0[¢(Xp~t)]/axzo} (63)
For simplicity of notations, we will below use 7; to denote a(i; Then the wave function can be computed by
U 6) =c(e.nd) [ [ Wt p)olie.p'0) - T (., )y (64)
v Iy

To avoid discretizing the §-function, we will use the properties of the -function to simplify the above integral; such a tech-
nique has been used in [4]. We will first consider the case of d = 1, and we will comment on the case of d > 2. 1Ifd =1, we
first explicitly determine the set of points where the zero level set intersects with the grid lines, i.e.

F:{(X,p)l//(X,,p):%IO[d)(X“p)} or !//(va]):‘ﬂ)[d)(x‘pj)] forl:lv’v]:lvvj}v (65)

then we interpolate all necessary ingredients at these locations and the wave function can be integrated by
U, t) = c(eh,d) Y AG(D)¥(x,t: 1), (66)
r

where the weight A¢(I") (the Jacobian) is computed by taking the difference in the take-off value of x between two adjacent
beams, as shown in Fig. 1. A similar approach has been developed in [17] in the context of solving the Helmholtz equation in
the high frequency regime. Such an approach can be generalized to d > 2 in the following way. Assuming that x € R?, we
first determine a set of points I’ in phase space R?*! which samples the zero level set. For example, this can be done by
the isosurfacing algorithm presented in [27]. In higher dimensions, since the initial implicit surface {(x,p) : p = V7o(x)}
can be parameterized by x € R, we can apply the summation formula (66) accordingly by computing the necessary Jacobian;
this will be reported in a forthcoming paper.

We remark that even though the Lagrangian formulation (20) and the Eulerian formulation (62) are theoretically equiv-
alent to each other, there are multiple advantages of the above Eulerian formulation. The first advantage is that we have uni-
form resolution of beam distribution, so that the Gaussian beam summation will have uniform resolution as well. The second
advantage is that we can generate wave functions under the same external potential with different initial profiles by slightly
modifying the solution from the amplitude equation in (57). The idea is to use Lemma 2.2 which essentially means that the
amplitude at t > 0 is proportional to the initial condition A,. Using this relation, we have

A" (d(Xi, Dy, tr), W (X, Dy, b))

A™ (%, p;, t) = A (%, s, tr) 7
o PR b %y £ (% Dy )

(67)
where A°M is the solution obtained by using the initial condition Agld from the previous initial wave function, and A™" is the
new amplitude solution with a different initial wave function.
3.2. A preliminary numerical method

We give the Eulerian Gaussian Beam summation algorithm for constructing wave functions when the beam propagation

is initialized by either the Fourier transform or the FBI transform. It is straight-forward to generalize this algorithm to other
initializations or problems in higher dimensions.

t>0

{{z.p) : ¥(w.p,t) — Oflé(x.p. )] /0x = 0}

P =0 P

A(T)

Fig. 1. Eulerian Gaussian beam with the initial wave function decomposed using the asymptotic decomposition or the pointwise matching decomposition.
The set of sampling points I" are shown in blue dots. The useful level set is plotted using a black solid line. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Algorithm 2. EGB-Tran-PDE:

1. Discretize the computational domain

Xi = Xenin -+ (1 — 1)AX, Ax:’w, i=1,2,...,1
P =P+ = 1)ap. Ap=Pum—Pun - j_12
tk = to + KAL, At:tf§t0, k=1,2,....K, (68)

and initialize € and all functions ¢, ¥;;0, Tij0,Aijo, Bijo and C;jo according to (56) and (57).
2. Solve the Liouville equations according to (56) and (57). Foreachi=1,...,I,j=1,...,Jand k = 2,...,K, determine

d(Xi, Dy, tie) ¥ (X, Dy ), T (X3, by ), AXi, Dy, ) B(Xi, Py, ), C(Xi, pj, ). (69)
3. Construct the individual wave function. At a fixed t = t;, foreachi =1,....Iandj' = 1,... ], compute

Y(x;, tk;xif,pjr) = A(x,-/,pjr, tx) eXp [W} (70)

where

T(X;, tes Xy, py) = T(Xy, py, te) + Dy - (% — Xy) +%(Xi - Xi’)T(B(Xi’vij t)C(xy, Dy te) ™) (X — Xy). (71)
4. Sum up the individual wave function. For eachi=1,....],

U(x;, ty) = c(€,h,n)AxAp i i W (x;, ti; Xy, Dy )- (72)

=1 j=1

Unfortunately, this algorithm has two main drawbacks. One is related to the accuracy. To obtain accurate solution of the
Liouville equations (56) and (57), we have to use a very fine computational grid even though those PDEs are solved using a
high-order numerical scheme such as WENO5-TVDRK3 [36]. Since the number of computational grids is essentially the same
as the number of beams used in sampling the integral, this underlying grid refinement might introduce unnecessary beams
to over-sample the solution.

Another drawback is related to the computational efficiency. Since the Liouville equations are hyperbolic type, the march-
ing step size is restricted by the CFL condition. The complexity of the whole algorithm is O(n?¢*!), where n is the number of
grid points in each direction in phase space and d is the dimension of physical space.

3.3. Semi-Lagrangian methods (SL)
To improve accuracy and efficiency of the above algorithm, we follow [18,17] which solve Liouville Egs. (56) and (57)

using a semi-Lagrangian method. This approach can be easily generalized to higher dimensions. We apply the method of
characteristics to the level set equations and the phase equation, giving

D¢

pr =

Dy

b~

DT 1,

Dr =P V@), (73)
where D/Dt is the material derivative defined by

D 2 0 Gl

Dt ot rax Mgy 7
At each grid point (x;,p;, t) fori=1,...,1,j=1,...,Jand k=2,... K in the phase space, one traces backward from t = t, to
t = to along the characteristic by integrating & = H, and % = —H, to obtain (x(to), p(to)). For the level set equations, we assign
¢ (Xi, p;, tr) = X(to) and (x;, pj, tr) = p(to). For the phase equation, we use the reciprocal principle and integrate the source
term [p(t)*/2 — V(x(t))] along the characteristic to obtain T(xi, pj, ti).

As for A, B and C, we apply the method of characteristics and obtain

DA 1 _

Dt —Etrace(BC 1)A7 Al—o = Ao(d(Xi, Dy, th), ¥ (Xi, Dy, ),
DB

Dt = —H,B—HuC,  Bl_o=Bo($(Xi, 0j, te), (X, Dj ),
DC

ﬁ: HPPB+HXPC7 C|t:0 = CO((Z)(Xi,pj,tk),lp(Xﬁ,pj,tk)), (75)
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@ (x(to), p(to)) )

Fig. 2. Eulerian Gaussian beam computed using the semi-Lagrangian method.

with the initial conditions imposed on the level t = t,. In this case, we do not have the reciprocal principle as for the phase
equation anymore; we need to use the forward ray tracing to solve these quantities along the same characteristic provided by
the backward ray tracing. This means that we first compute the ray trajectory by integrating & = H, and ‘;—‘Z = —H, backward
in t, and then we integrate (75) forward in t along the same characteristic, as shown in Fig. 2.

In terms of numerical integration of the Hamiltonian system, we adopt a symplectic scheme. Specifically, to preserve the
symplectic structure of the Hamiltonian system,

q=1(q,v),
v =_g(q,v), (76)

we adopt the following fourth order implicit Runge-Kutta method [5,9]:
s S
ki Zf(qn +h Za,»jkj, Un + hZ&Ul,) s
= =
S S
I,' g<qn +hZa,-jkj, Un +h2€lulj),

j=1 Jj=1

s
Gny1 =qn + hzbikiv

i=1

S
Unyt = Un+h Y bil, (77)
i=1
where s =2 and

(78)

[av]=[&y]=< v ”4‘@6).

1/4+V3/6 1/4

and b; = 1/2 (i = 1,2). The equations for k; and [; (i = 1,...,s) are nonlinear and have to be solved by fixed-point iteration,
provided that the step size h is sufficiently small.

Therefore, the accuracy in the solution now depends solely on the size of the time step At but independent of the number
of grid points in discretizing the phase space, since we treat each of these grid points independently. This allows us to use
relatively small number of beams to sample the solution, which in most cases are sufficient to give reasonable qualitative
solution.

Table 1
Complexity of various Eulerian Gaussian beam algorithms.
AD PM FBI
Wave function decomposition n n? B
Evolution n? n? n
Extraction nlogn nlogn -
Summation Nnlogn Nnlogn Nn?
Total n3 + Nnlogn n3 + Nnlogn m + f+ Nn?

Each extra wave function Nnlogn n® +Nnlogn B+ Nn?
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Table 2

Complexity of various algorithms for solving s different initial wave functions or different h.

FDCN sN?

SP2 sNlogN
LGB-AD s(n? + Nn)
LGB-PM s(n® + Nn)
LGB-FBI s(n3 + f+ Nn?)
EGB-AD n3 +sNnlogn
EGB-PM sn® + sNnlogn
EGB-FBI n3 + s + sNn?

Algorithm 3. EGB-Tran-SL:

1. Discretize the computational domain

Xi = Xmin + (I — 1)AX,

-1
Dy =Prin + (= 1)Ap,  Ap = Fni—

te = to + kAL,

K

and initialize e.

Ax — Xmax — Xmin

A==l 10

i=1,2,....1,

j:1727"'7.]7

(79)

a 2 b 1F ]
1.8 08} 1
1.6 06} 1
1.4 04} 1
1.2 0.2} |

- 1 o 0 1
08 =02 1
0.6 0.4 1
0.4 —0.6¢ 1
0.2 08¢ 1

0 1t ]
= -1 -0.5 0 0.5 1
X

C 1 1 d 1 ]
0.8 1 0.8} 1
0.6 1 0.6} 1
0.4 1 0.4} 1
0.2 1 0.2} 1

a o0 1 a of 1
-0.2 1 -0.2} 1
-0.4 1 -0.4} 1
-0.6 1 -0.6} 1
-0.8 1 -0.8} 1

-1 4 -1t 4
-1 -0.5 0 0.5 1 -1 -0.5 [} 0.5 1
X X

Fig. 3. (Example 5.1) The initial wave function is decomposed using the asymptotic decompositions or the pointwise matching decomposition. (a) Rays in
the x — t space; (b) the terminal locations of bicharacteristics in the x — p space at t = 0.5; (c) the terminal locations of bicharacteristics in the x — p space at
t = 1.0; (d) the terminal locations of bicharacteristics in the x — p space at t = 2.0.
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Fig. 4. (Example 5.1) Contour plot of |Ay| obtained by embedding the initial wave function in phase space using the FBI transform.






2966 S. Leung, J. Qian/Journal of Computational Physics 228 (2009) 2951-2977

A(Xivpjvtk)7B(Xi7pj7tk)7c(xi7pj7tk)' (81)
4. Construct the individual wave function. At a fixed t = t;, foreach i =1,...,Iand j' = 1,...,J, compute
iT(X:, t; Xy, Py
W (x;, ti; X, Dy) = A(xy, Dy, b)) €Xp <7( : kh : ’)>, (82)
where
1 _
Tk i X, Py ) = TPy ) + Py - (% = X¢) 5 (% = %) (B(Xe By t0)C 0y Py )™ )% = X0). (83)
a, b .
3.5 3.5
3 3
25 25
- 2 - 2
1.5 1.5
1 1
0.5 0.5
0 0
- -1 -05 05

X ©

d .
3.5

3

25

- 2
1.5

1

0.5

0
-1

Fig. 7. (Example 5.1) Comparison of the position density at t = 2.0 (after caustic) computed by the Crank-Nicolson scheme and Eulerian Gaussian beams for
h = 1/1024. The Crank-Nicolson position density is computed with a mesh N = 2'> and At = 107, (a) The asymptotic decomposition with € = 1; (b) the
asymptotic decomposition with € = h/Ax?; (c) the pointwise matching decomposition with € = h/Ax?; and (d) the FBI transform with € = 1.
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Fig. 8. (Example 5.1) A zoom in of Fig. 7. Comparison of the position density at t = 2.0 (before caustic) computed by the Crank-Nicolson scheme and
Eulerian Gaussian beams for h = 1/1024. The Crank-Nicolson position density is computed with a mesh N =2'° and At = 107*. (a) The asymptotic
decomposition with € = 1; (b) the asymptotic decomposition with € = h/Ax?; (c) the pointwise matching decomposition with € = h/Ax?; and (d) the FBI
transform with € = 1.
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5. Sum up the individual wave function. For eachi=1,...,1,

I
U(x;, te) = c(e, ,m)AXAP D - >~ (X, tis Xy, Py). (84)

o o7

i'=1 j=1

4. Complexity

In this section, we will compare the complexities of various methods. In particular, we will concentrate on solving the
Schrédinger equation for s different initial wave functions or different h under the same potential. For simplicity, we look
at the one-dimensional case, i.e. d = 1. Let n be the number of beams we use in each x-or p-direction. Therefore, the total
number of beams is n if we initialize beam propagation by the asymptotic decomposition or the pointwise matching decom-
position. The total number of beams is n? if we initialize beam propagation by the FBI transform. Let N be the number of
points we use to visualize the solution. In general, we need at least five grid-points to visualize one wavelength and this im-
plies N = O(1/h). Using the asymptotic method, we would like to resolve the solution in much less computational cost so
that n < N.

Since a fast discrete 